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Abstract    ....
This paper formulates the general methodology for

estimating the bias error distribution of a device in a
measuring domain from less accurate measurements when
a minimal number of standard values (typically two
values) are available.  A new perspective is that the bias
error distribution can be found as a solution of an intrinsic
functional equation in a domain.  Based on this theory, the
scaling- and translation-based methods for determining the
bias error distribution are developed.  These methods are
virtually applicable to any device as long as the bias error
distribution of the device can be sufficiently described by a
power series (a polynomial) or a Fourier series in a
domain.  These methods have been validated through
computational simulations and laboratory calibration
experiments for a number of different devices.

1. Introduction
The measurement of an instrument always has error

defined as the difference between the measured value and
the true value.  The total error is the sum of the bias error
and the random error.  Most books and articles on
uncertainty analysis have studied in detail statistical
estimates of the random error [1,2].  However, the bias
error, which is the fixed, systematic component of the total
error, is not sufficiently discussed because it is often
assumed that all bias errors have been eliminated by
calibration.  Indeed, the bias error can be determined by
comparison with a standard having accuracy much better
than the device being tested.  The standard device is
ultimately traceable to a national or international standard
laboratory.  If the standard values over the whole range of
measurements are known, the determination of the bias
error distribution of an instrument is extremely trivial.
Unfortunately, it is not always possible to have a standard
device available for calibration.  Also, the standard device
itself has limited accuracy.  Finley [3] proposed a unique
idea for extracting the absolute bias error of an angular
measurement device by comparing it with another
instrument of comparable quality.  The differences in
readings from the two devices are obtained with two
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different initial angles of the devices.  Next, a Fourier
analysis of the two sets of the differences recovered the
bias errors for both devices.  Finley’s method was further
discussed by Snow [4] from the standpoint of the Fourier
transform.  Finley’s work shows that in angular
measurements the absolute bias error distributions can be
obtained by using two less accurate devices.  Naturally, a
legitimate question is whether there is a general method for
estimating the bias error distribution of a device.  This
question will be answered in this paper.

This paper formulates the general methodology for
estimating the absolute bias error distribution of a device
in a measuring domain when only a few standard values
(typically two values) are known.  In the proposed
approach, the bias error distribution is sought as a solution
of an intrinsic functional equation in a measuring domain.
The scaling-based method and translation-based method
are developed, in which the analytical solutions to the
functional equations for the bias error distributions are,
respectively, expressed as a power series and a Fourier
series in a given domain.  The scaling-based method is
effective for a large class of the bias error distributions that
can be sufficiently described by a power series or a
polynomial.  The approximate scaling-based method for
practical implementation is developed, requiring two
standard values to determine the complete bias error
distribution.  An empirical rule for selecting an appropriate
order of a polynomial is suggested to achieve the good
accuracy of calculating the bias error distribution.  Effects
of the random measurement perturbations on calculation of
the bias error distribution are studied through Monte Carlo
simulations.  In contrast to the scaling-based method, the
translation-based method has relatively limited
applications, but it is particularly useful for angular
measurements since the bias error distribution can be
naturally expressed as a Fourier series.  The scaling- and
translation-based methods for simultaneously estimating
the bias error distributions of two devices are also
described.  Computational simulations and laboratory
experiments for calibrating a number of different devices
are conducted to validate the proposed methodology to
recover the bias error distribution.

2. Bias Error and Intrinsic Functional Equation
Let )x(m  be the measurement value of a ‘true’

physical quantity x by a device having a deterministic bias
error )x(ε  then,



2

)x(x)x(m ε+= . (1)
The symbol )x(m  can be interpreted as a measurement
operator of the variable x.  In order to obtain an additional
independent equation for )x(ε , a quantity βα +x  that is
a linear transformation of x is measured by the same
device, where α  is a scaling constant and β  is a
translation constant.  The measurement value of βα +x  is
expressed as

)x(x)x(m βαεβαβα +++=+ . (2)
Eliminating x in Eqs. (1) and (2), one obtains a functional
equation for )x(ε

)x()x()x( 1 βαεαεδ +−= − , (3)
where the difference )x(δ  is a known function that can be
measured by the device for given α  and β , i.e.,

))x(m()x(m)x( 1 ββααδ −+−= − . (4)
Eq. (3) is an intrinsic functional equation governing the
bias error distribution )x(ε .  Because no assumption has
been made, this functional equation for the bias error
distribution is virtually applicable to any measurement
instrument.  Although more complicated functional
equations can be similarly constructed as a model of the
bias error, Eq. (3) enjoys its simplicity without loss of
generality.  Now, the fundamental problem is to find a
solution to Eq. (3) for )x(ε  in a given domain

]x,x[D 21=  and a class of admissible functions
(including domains and ranges).  The discussions on
functional equations from a mathematical perspective can
be found in references 5 and 6.  Although a general
solution to Eq. (3) in the power-series-form can be found,
two special but very useful cases are considered here,
which are a pure scaling case ( 1,0≠α  and 0=β ) and a
pure translation case ( 1=α  and 0≠β ).  Not only the
special cases lead to simpler solutions, but also they are
more easily implemented in the real measurements.
The Scaling-Based Method

In the pure scaling case ( 1,0≠α  and 0=β ), the
intrinsic functional equation is

)x()x()x( 1 αεαεδ −−= , (5)
where )x(δ  is a known function

)x(m)x(m)x( 1 ααδ −−= . (6)
Assume that the functions )x(δ  and )x(ε  can be
expanded as a power series in a given domain

]x,x[D 21= , that is,

n
N

0n
n xd)x( �

=
=δ  and n

N

0n
n xe)x( �

=
=ε . (7)

For a given set of measurement data points of )x(δ , the

coefficients nd  can be obtained using the least-squares

method (see Appendix).  Substituting Eq. (7) into Eq. (5),
one can determine all the coefficients ne  except for 1n = ,

)1/(de 1n
nn

−−= α .    )N3,2,0n( �= (8)
For n =1, to determine the remaining unknown coefficient

1e , the measurement value )x(m  is re-written as

x)e1(xe)x(m 1
n

N

1n
0n

n ++=�
≠
=

. (9)

Integrating Eq. (9) over a given domain
]x,x[D]x,x[D 21s2s1s =⊆= , one obtains an

expression for the coefficient 1e

1dx]xe)x(m[
xx

2e
s2

s1

x

x
n

N

1n
0n

n2
s1

2
s2

1 −−
−

= � �
≠
=

, (10)

where a condition 2
s2

2
s1 xx ≠  must hold.  We often assign

]x,x[]x,x[ 21s2s1 =  if 2
2

2
1 xx ≠ .  Thus, all the

coefficients ne  are obtained and the bias error distribution
)x(ε  is, in principle, determined.  Naturally, the above

method is called as the scaling-based method for
recovering the bias error.

An underlying assumption for the scaling-based
method is that the functions )x(δ  and )x(ε  can be
sufficiently expressed as a power series or a polynomial in

]x,x[D 21= .  To illustrate this method, we consider a
hypothetical bias error distribution of a device in

]10,1[D = ,

)x3.0exp(5.0x106

x10x104x03.0x01.03.0)x(
256

3424

−+×−

−×−+−=
−

−−ε
. (11)

As shown in Fig. 1, the bias error distribution computed by
using the scaling-based method for α = 2 and N = 13 is in
excellent agreement with one given by Eq. (11).  The
difference between the given and computed bias errors is
also plotted in Fig. 1.

In an ideal case, it seems likely to recover the bias
error distribution even without using any standard value.
However, one may notice that both )x(δ  and )x(ε  in Eq.
(7) are expanded as a function of the true variable x which
is not exactly known a priori.  It will be pointed out later
that the approximate scaling-based method for actual
measurements still needs two standard values to recover
the bias error distribution in the domain ]x,x[D 21= .
The Translation-Based Method

In the pure translation case ( 1=α  and 0≠β ),
instead of using a power series, a Fourier series is
employed because of the shift property of a complex
exponential function.  Since a Fourier series has the
periodic property, the variable x and the translation



3

constant β  in Eqs. (3) and (4) are replaced by the angular
variables θ  and 0θ , respectively.  In a domain

]2,0[D πθ = , the intrinsic functional equation for the
bias error distribution )(θε  is

)()()( 0θθεθεθδ +−= , (12)
where )(θδ  is a known function for a given 0θ

00 )(m)(m)( θθθθθδ ++−= . (13)
Assume that the functions )(θδ  and )(θε  in

]2,0[D πθ =  can be expanded as a Fourier series

)]nsin(b)ncos(a[)( )(
n

N

1n

)(
n θθθδ δδ�

=
+= ,

)]nsin(b)ncos(a[2/a)( )(
n

N

1n

)(
n

)(
0 θθθε εεε

�
=

++= . (14)

The coefficients )(
na δ  and )(

nb δ  in )(θδ  can be
determined using the least-squares method for a given set
of data points (see Appendix).  For 0n ≠ , a relation
between ( )(

na ε , )(
nb ε ) and ( )(

na δ , )(
nb δ ) )N,2,1n( �=  is

derived by substituting Eq. (14) into Eq. (12), that is,

( ) ( )T)(
n

)(
n

1T)(
n

)(
n b ,aGb ,a δδεε −= , )N3,2,1n( �= (15)

where

��
�

�
��
�

�

−
−−

=
)ncos(1)nsin(

)nsin()ncos(1
G

00

00

θθ
θθ

.

Because the determinant )]ncos(1[2)Gdet( 0θ−=
should not be zero for the existence of a unique solution,
the necessary conditions for a unique solution are

2/kn 0 ππθ +≠  ( �,2,1,0k = ) and 0n ≠ .  For 0n = ,

similar to the pure scaling case, the coefficient )(
0a ε  can be

determined by the following integral over ]2,0[D πθ =

πθθθ

θπ

εε

πε

2d]})nsin(b)ncos(a[

)(m{a

N

1n

)(
n

)(
n

2

0
1)(

0

−+−

=

�

�

=

−

. (16)

Therefore, all the coefficients ( )(
na ε , )(

nb ε ) are known and
the bias error distribution )(θε  is readily calculated.  We
refer to this method as the translation-based method.  Note
that the constant term in the Fourier series for )(θδ  in Eq.
(14) is zero.  This is a restrictive assumption for the
translation-based method.  Another implicit assumption
embedded in Eq. (14) is that the bias error distribution
must be periodic.

As an example, consider a hypothetical bias error
)(θε  defined in ]2,0[D πθ = ,

)4sin(04.0)2sin(06.0

)2cos(03.0)cos(02.008.0)(

θθθ

θθθε

+−

++=
. (17)

Figure 2 shows a comparison between the given bias error
distribution (17) and the distribution recovered by using
the translation-based method ( 20/πθ0 =  and 6N = ).
Simulations indicate that the translation-based method is
good for recovering the bias error distribution whose
behavior is dominated by trigonometric functions.  The
Fourier series solution is particularly useful for angular
measurements in the domain ]2,0[D πθ = .  Compared to
the scaling-based method, the translation-based method
has limited applications because of the implicit assumption
of periodicity )2()0( πθθ = .  On the other hand, when the
periodicity condition )2()0( πθθ =  is imbedded in data,
the translation-based method does not explicitly require
any standard value to recover the bias error distribution.  In
contrast, the scaling-based method typically needs two
standard values in the real measurements (see Section 3).

3. The Approximate Scaling-Based Method
In Section 2, we describe the scaling-based method for

recovering the bias error distribution as a solution of the
functional equation.  However, the method in the ideal
condition cannot be directly applied to the real
measurements because the true variable x in Eq. (7) is not
known a priori.  Therefore, an approximate approach is
developed, in which the true variable x is replaced by a
known approximate reference value apprx .  The

approximate reference value apprx  is often a measurement
value by another device with a comparable accuracy.  Due
to the substitution of apprx  for x, the scaling-based method

gives an approximate bias error distribution appr)x(ε  that

deviates from the true bias error distribution )x(ε .  The
deviation of appr)x(ε  from )x(ε  can be reasonably

modeled by a linear function of apprx .  Thus, this
approximate method requires two standard values to
determine the unknown coefficients in the linear function
of deviation for recovering the whole bias error
distribution.

Replacing the true variable x in Eq. (7) by a known
approximate reference variable apprx , one obtains an
alternative formulation

n
appr

N

0n
nappr )x(d)x( �

=
=δ

n
appr

N

0n
nappr )x(e)x( �

=
=ε , (18)

where the function appr)x(δ  is an approximate form of

)x(δ  in Eq. (6), i.e.,

)x(m)x(m)x( appr
1

appr ααδ −−= . (19)
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The coefficients nd  can be obtained by using the least-

squares method and the coefficients ne  are given by Eqs.
(8) and (10) in Section 2.  Therefore, the approximate bias
error distribution appr)x(ε  is determined.

Now, we estimate the difference between )x(ε  and

appr)x(ε .  Assuming )x('xxappr ε+= , one knows

)'(ox)x('en)x(

)x(e)x(

1n
N

1n
n

n
appr

N

0n
nappr

εεε

ε

++=

=

−

=

=

�

�
, (20)

where )x('ε  is the bias error of the approximate reference
value apprx  and )'(o ε  is a higher-order small term of

)x('ε .  Based on the triangle inequality and the Cauchy-
Schwarz inequality, furthermore, one obtains the following
estimate for the difference between )x(ε  and appr)x(ε  in

the domain ]x,x[D 21=

c
1n2
xx

en)||||/||'||(

||||/||||
2/1N

1n

1n2
1

1n2
2

n

appr

+
�
�

�

�

�
�

�

�

−
−

≤

−

�
=

−−
εε

εεε

, (21)

where c is a positive constant and |||| •  is the L2-norm

defined as 2/1
x

x
2 ]dx)x(f[||f||

2

1
�= .  Eq. (21) indicates

that the upper bound of the norm |||| apprεε −  is simply

proportional to ||||/||'|| εε , but it is related to the size of
the domain ]x,x[D 21=  in a non-linear fashion.
Computational simulations indicate that appr)x(ε  is often

a shifted, rotated and sheared representation of )x(ε
although it describes the general behavior of )x(ε .

The difference between the true and approximate bias
error distributions )x(ε  and appr)x(ε  can be reasonably

modeled by a linear function of apprx , that is,

)xCC()x()x( appr10appr +−= εε . (22)
The linear term serves as a correction for the approximate
solution appr)x(ε .  Clearly, two standard values are

required to determine the constants 0C  and 1C .  When
two true values are known at two specific points, the
constants 0C  and 1C  can be determined.  The linear
model (22) is able to give a reasonable estimate for the
bias error distribution.  The approximate reference value

apprx  is provided by another independent device with the
accuracy comparable to the tested device.

As an example, consider a bias error distribution
)x(ε  in ]10,1[D =

)x3.0exp(x108

x108x08.03.0)x(
245

23

−−×+

×−−=
−

−ε
. (23)

The approximate reference value is given by
)x('xxappr ε+= , where

)]x18.0(hsec5.0)x2.0exp(5.0
x103x02.0x1052.0[A)x(' 3323

+−−
×−+×−= −−ε . (24)

The constant A in Eq. (24) is used to adjust the magnitude
of )x('ε  in computational simulations.  Figure 3 shows
the given bias distribution (23) and the computed
distributions for α = 2 and N = 13 when the relative
magnitudes of )x('ε  are 29.0||||/||'|| =εε , 1.17, 1.75,
and 2.95.  As indicated in Fig. 3, the computed distribution
is able to describe the behavior of the bias error
distribution )x(ε  even when the accuracy of the
approximate reference value is considerably worse than
that of the tested device.  Figure 4 shows the difference
between the given and computed bias error distributions

||)x(||/||)x()x(|| camp εεε −  as a function of

||)x(||/||)x('|| εε .  The linear relation between
||)x(||/||)x()x(|| camp εεε −  and ||)x(||/||)x('|| εε

shown in Fig. 4 is consistent with the theoretical estimate
(21).

The selection of the order of the polynomial N in Eq.
(18) significantly affects the accuracy in calculation of the
bias error distribution.  A polynomial having a low order
may lead to a poor fit to the true values, while a
polynomial having an excessively high order may produce
a large variance due to the over-fitting problem.  A
question is whether there exists an optimal order of the
polynomial to achieve the highest accuracy of calculation.
An answer to this problem is not available in a strictly
mathematical sense.  Nevertheless, based on computational
simulations for various bias error distributions, an
empirical rule is proposed here for determining an
appropriate order of the polynomial.  We denote )N,x(ε
as the bias error distribution calculated using a Nth-order
polynomial and define the norm ||)N,x()1N,x(|| εε −+
as the distance between the bias error distributions
calculated using the (N+1)th-order and Nth-order
polynomials.  Computational simulations show that the
distance ||)N,x()1N,x(|| εε −+  usually becomes small
in a certain range of the order N when the polynomial
correctly describes the true bias error distribution.  This
phenomenon can be clearly seen when

||)N,x()1N,x(|| εε −+  is plotted as a function of the
order N.  Figure 5 shows a typical semi-logarithmic plot of

||)N,x()1N,x(|| εε −+  as a function of the order N for
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the given bias error distribution (23), indicating a
characteristic valley in a range of N = 10-15.  In this case,
a polynomial having the order in N = 10-15 can provide a
reasonable estimate for the bias error distribution.

4. Effects of Random Perturbations
In actual calibration experiments, a measurement
)x(m  has the random error in addition to the bias error.

The random error affects the solution of the intrinsic
functional equation for recovering the bias error
distribution.  To simulate effects of the random
perturbations, we consider a perturbed measurement

)]x(p1)[x(m + , where )x(p  is a random perturbation
with the normal distribution.  Monte Carlo simulations can
give the probability density distribution of the relative
difference ||)x(||/||)x()x(~|| εεε −  that is a random
variable, where )x(~ε  is the perturbed bias error
distribution calculated by using the scaling-based method.
For )x(p  having the standard deviation of 0.005, the
scaling-based method with 2=α  and N = 13 is used to
recover the bias error distribution (11) for 500 samples.
Figure 6 shows the probability density distribution of the
relative difference ||)x(||/||)x()x(~|| εεε − .  The
expectation value of ||)x(||/||)x()x(~|| εεε −  is plotted
in Fig. 7 as a function of the standard deviation of the
random perturbation )x(p .

The scaling constant α  may be also changed by a
small random perturbation in certain measurements.  The
randomly perturbed scaling constant is expressed as

)p1( αα + , where αp  obeys the normal distribution.
When αp  has the standard deviation of 0.005, the
disturbed bias error distribution )x(~ε  is calculated by
using the scaling-based method ( 2=α  and N = 13) for
500 samples for the given bias error distribution (11).
Figure 8 shows the resulting probability density
distribution of ||)x(||/||)x()x(~|| εεε − , indicating a
roughly uniform distribution.

5. Methods for Simultaneously Estimating Bias Errors
of Two Devices
The Scaling-Based Method

In this section, we describe the scaling-based method
for simultaneously determining the bias error distributions
of two devices.  Consider devices A and B that have the
measurements

)x(x)x(m AA ε+=  and )x(x)x(m BB ε+= . (25)
The intrinsic functional equations for the bias error
distributions )x(Aε  and )x(Bε  are

)x()x()x(

)x()x()x(

B
1

A2

BA1

αεαεδ
εεδ

−−=

−=
, (26)

where )x(m)x(m)x( BA1 −=δ  and

)x(m)x(m)x( B
1

A2 ααδ −−=  are known functions
obtained from measurements.  Assume that the functions

)x(1δ , )x(2δ , )x(Aε  and )x(Bε  can be expanded as a
power series in a given domain ]x,x[D 21= , that is,

n
N

0n

)1(
n1 xd)x( �

=
=δ  and n

N

0n

)2(
n2 xd)x( �

=
=δ ,

n
N

0n

)A(
nA xe)x( �

=
=ε  and n

N

0n

)B(
nB xe)x( �

=
=ε . (27)

For a given set of data points of )x(1δ  and )x(2δ , the

coefficients )1(
nd  and )2(

nd  can be obtained using the
least-squares method.  Except for n =1, the coefficients

)A(
ne  and )B(

ne  can be determined by

1n

)1(
n

1n)2(
n)A(

n 1
dd

e
−

−

−
−

=
α
α

 and 1n

)1(
n

)2(
n)B(

n 1
dd

e
−−

−
=

α
.

)N3,2,0n( �= (28)
For n =1, since the functional equations (26) are reduced
to one independent equation, there is only a single
equation )B(

1
)A(

1
)2(

1
)1(

1 eedd −==  for two unknowns
)A(

1e  and )B(
1e .  To determine the remaining unknown

coefficients )A(
1e  and )B(

1e , we use an integral expression

1dx]xe)x(m[
xx

2e
s2

s1

x

x
n

N

1n
0n

)A(
nA2

s1
2
s2

)A(
1 −−

−
= � �

≠
=

, (29)

and the relation )1(
1

)A(
1

)B(
1 dee −= .  The given domain

]x,x[D s2s1s =  ( 2
s2

2
s1 xx ≠ ) for integration is a sub-

domain of the measurement domain ]x,x[D 21= .
As discussed previously, since the true variable x is

not known a priori in practical applications, approximation
should be used in which the true variable x is replaced by
the known approximate variable )x(mA .  The
approximate formulations are

n
A

N

0n

)1(
nappr1 )]x(m[d)x( �

=
=δ ,

n
A

N

0n

)2(
nappr2 )]x(m[d)x( �

=
=δ ,

n
A

N

0n

)A(
napprA )]x(m[e)x( �

=
=ε ,

n
N

0n
A

)B(
napprB )]x(m[e)x( �

=
=ε . (30)
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where )x(m)x(m)x( BAappr1 −=δ  and

))x(m(m)x(m)x( AB
1

Aappr2 ααδ −−=  are known

functions.  The approximate bias errors apprA )x(ε  and

apprB )x(ε  can be determined by using Eqs. (28) and (29).

The approximations apprA )x(ε  and apprB )x(ε  describe
the general behavior of the bias error distributions, but
deviate from the true ones.  The linear model for correcting

apprA )x(ε  and apprB )x(ε  is given by

)]x(mCC[)x()x( A1A0AapprAA +−= εε
)]x(mCC[)x()x( A1B0BapprBB +−= εε . (31)

When two true values are known at two specific points, the
constants 0AC , 1AC , 0BC , and 1BC  can be determined.

Simulations indicate that Eq. (31) is able to describe a
class of the bias error distributions )x(Aε  and )x(Bε  that
are reasonably represented by a power series.  As an
example, we consider the bias error distributions )x(Aε
and )x(Bε  in ]10,1[D =

45242
A x108x102x1043.0)x( −−− ×−×−×−=ε ,

34223
B x103x102x1051.0)x( −−− ×−×+×−=ε . (32)

Figure 9 shows the given and calculated bias error
distributions )x(Aε  and )x(Bε  for α = 2 and N = 10.
The empirical rule for selecting the order of the
polynomials in Section 3 is also applicable to the two-
device case.
The Translation-Based Method

In a domain ]2,0[D πθ = , the intrinsic functional
equations for the bias errors )(A θε  and )(B θε  are

)()()(
)()()(

0BA2

BA1

θθεθεθδ
θεθεθδ

+−=
−=

, (33)

where 0θ  is a constant translation in radian,
)(m)(m)( BA1 θθθδ −= , and

00BA2 )(m)(m)( θθθθθδ ++−=  are known functions.
Assume that in ]2,0[D πθ =  the functions )(1 θδ ,

)(2 θδ , )(A θε  and )(B θε  can be expanded as

)]nsin(b)ncos(a[2/a)( )1(
n

N
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0B θθθε �
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(34)

The coefficients ( )1(
na , )1(

nb , )2(
na , )2(

nb ) in )(1 θδ  and
)(2 θδ  can be determined using the least-squares method.

For 0n ≠ , a relation between ( )A(
na , )A(

nb , )B(
na , )B(

nb )

and ( )1(
na , )1(

nb , )2(
na , )2(

nb ) is

( ) ( )T(2)
n

(2)
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(1)
n

(1)
n

1T(B)
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(B)
n

(A)
n

(A)
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)N3,2,1n( �= (35)
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Since the determinant of G is )]ncos(1[2)Gdet( 0θ−= ,
a necessary condition for the existence of a unique solution
is 2/kn 0 ππθ +≠  ( �,2,1,0k = ).  For 0n = , only one

equation )B(
0

)A(
0

)2(
0

)1(
0 aaaa −==  is available for two

unknowns )A(
0a  and )B(

0a .  Using a similar method to the

pure scaling case, the coefficient )A(
0a  can be determined

by an integral over ]2,0[D πθ =

πθθθ

θπ
π

2d]})nsin(b)ncos(a[

)(m{a

N

1n

)A(
n

)A(
n

2

0
A
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. (36)

Therefore, the coefficient )1(
0

)A(
0

)B(
0 aaa −=  is readily

known.  As an example, we consider the following bias
errors )(A θε  and )(B θε  in ]2,0[D πθ =

)3sin(104)sin(106

)2cos(103)cos(02.010503.0)(
43

34
A

θθ
θθθθε

−−

−−

×+×−

×++×+=

)4sin(103)sin(10

)3cos(106)cos(05.010305.0)(
34

34
B

θθ
θθθθε

−−

−−

×++

×−+×+=

(37)
Figure 10 shows a comparison between the given bias
errors and those computed by using the translation-based
method ( 35/πθ0 =  and 6N = ).

6. Applications
In principle, the aforementioned methods are

applicable to any device.  Here, to illustrate applications of
these methods, we present several typical examples in
voltage measurements, angular measurements, and optical
measurements.
Voltage Calibrations for A/D Converter

A voltage divider was constructed using stable
resistors to obtain a nominal voltage ratio of 0.5 (the
scaling constant 0.5 in the scaling-based method).  The
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input to the voltage divider was connected to a stable
voltage source and the output was connected to one
channel of a 24 bit multiplexing A/D converter (Lawson
Model 201).  Another channel was connected directly to
the voltage source.  The voltage source was varied from –
5v to +5v (the full range of the A/D converter).  The 100
readings on both channels were recorded.  No accuracy
was assumed for the voltage source or the voltage divider
ratio.  Calculation for the bias error distribution was
performed by using the approximate scaling-based method.
Two reference readings were taken to provide the standard
values, one with the input shorted and another with the
input voltage set to exactly 3 volts (as measured on a
precision voltmeter (HP 3458A) of the accuracy of 8ppm).
This is all that is required to find the calibration of the A/D
converter by using the approximate scaling-based method.
Eleven additional points were taken using the precision
voltmeter (HP 3458A) over the full range to verify the
mathematical solution.  The voltage calibration plots in
Fig. 11 shows the verification points and the calibration
results computed using the scaling-based method for α =
0.5 and N = 15.  The calibration curve computed by using
the scaling-based method is in good agreement with the
verification data.

Instead of using a voltage divider for scaling, scaling
can be achieved based on dial readings of a power supply
(Wavetek Model 220).  An advantage of this approach is
that a physical device like the divider is no longer required
for scaling.  Figure 11 shows the bias error distribution
computed by using the scaling-based method in which
scaling is controlled based on the dial readings.  Compared
with the results given by using the divider, the distribution
obtained by using the dial readings shows larger local
variations.  This is because the mechanical voltage setting
device of the power supply caused abrupt voltage
variations over a certain range of operation.  It is expected
that a more stable device will produce a smoother bias
error distribution.
Angle Calibrations for Encoder and Indexing Table

The two-device translation-based method was used for
angle calibration on a dividing head with attached encoder.
The secondary device was an indexing table with a
resolution of one degree.  Both devices have a nominal
accuracy specification of one arc second.  The axis of
rotation was horizontal so that a precision servo
accelerometer was used as an indicator of level.  The
procedure involves rotating the dividing head clockwise in
10o increments, rotating the indexer counter-clockwise in
10o increments, and reading the level as indicated by the
precision accelerometer.  The second set of data, taken
with the indexer and accelerometer translated -60 degrees.
To recover the bias error distributions, the first set of data
and the second set of –60o-translated data were processed
by using the two-device translation-based method with a
4th-order Fourier series.  The calibration curves for both
the encoder and indexing table can be simultaneously

determined, as shown in Fig. 12.  The black circular points
in Fig. 12 are the results of a conventional calibration
using a device with an accuracy four times better than the
dividing head with the encoder.  The bias error distribution
measured by using the precision accelerometer is in good
agreement with the computed distribution for the encoder.
It is worthwhile noting that we do not explicitly use any
standard value to recover the bias error distribution.
Nevertheless, the periodicity condition )2()0( πθθ = ,
which is automatically satisfied in the Fourier series
solution, can be considered as an imposed constraint.  The
two-device translation-based method, originally proposed
by Finley [3], has been used regularly by Wyle
Laboratories to calibrate precision angle-measuring
devices in their facility and at NASA Langley.
Radial Lens Distortion

An interesting example is application of the scaling-
based method to determination of the radial lens distortion.
In reality, a lens used for imaging is not perfect and the
imperfect lens may distort an image.  Thus, camera
calibration to determine the camera parameters including
the lens distortion parameters is crucial for accurate image-
based measurements [7].  The most dominant lens
distortion is the radial lens distortion that is symmetric
about the principal-point (close to the geometric center of
an image).  The radial lens distortion is described by a
simple model 3

1 rKr =δ , where rδ  is a bias error in the
radial distance due to the lens distortion, 1K  is the radial
distortion parameter, and r  is the radial distance from the
principal-point.  The radial distortion parameter 1K  in
addition to other camera parameters can be obtained in
comprehensive camera calibrations by using analytical
photogrammetric techniques.  For an 8mm Computar TV
lens used in this test, an optimization camera calibration
method [7] gives 2

1 mm001297.0K −= .
Unlike analytical photogrammetric techniques that use

a special mathematical model for the lens distortion, the
scaling-based method determines the radial lens distortion
under a general theoretical framework of the bias error.
During tests, a 22in×17in target plate with 121 retro-
reflective targets of 1/2in diameter was used to provide a
planar target field.  A CCD video camera (Hitachi KP-
F1U) with an 8mm Computar TV lens, viewing
perpendicularly the target plate, was used to take images of
the plate placed at two different distances from the camera.
Figure 13 shows typical images of the target plate at two
different distances from the camera.  The digitized image
has 480640 ×  pixels and the nominal pixel spacing is 9.9
µm in both the horizontal and vertical directions.  The
centroids of the targets and the radial distances of the
targets from the geometric center in these images were
computed.  Two images of the target plate at two different
distances from the camera naturally provide scaling in the
radial distance in image plane.  The scaling constant
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8262.0=α  was obtained by averaging ratios between the
radial distances of the corresponding targets from the
geometric center in two images.  The bias error
distribution )r(ε  was calculated by using the approximate
scaling-based method when the order of the polynomial is
suitably chosen in N = 20-28.  By the definition of )r(ε ,
one knows )r()r(r εδ −= .  The condition 0)0(r =δ
must be satisfied.  Thus, only one standard value is
required to determine the unknown constants in Eq. (22),
which is given by the optimization camera calibration
method.  Figure 14 shows the radial lens distortion
distributions obtained by the scaling-based method (N =
25) and the optimization camera calibration method for an
8mm Computar TV lens.

7. Conclusions
The bias error distribution of a device can be sought as

a solution of the intrinsic functional equation.  Based on
this idea, the scaling- and translation-based methods have
been developed to determine the bias error distribution in a
domain from less accurate measurements.  The scaling-
based method is applicable to a device whose bias error
distribution can be adequately expressed as a power series
or a polynomial in a domain.  Practical application of the
scaling-based method typically requires two standard
values to recover the complete bias error distribution in the
whole domain.  The suitable order of a polynomial for
accurate recovery of the bias error distribution can be
selected according to an empirical rule proposed in this
paper.  The translation-based method, which uses a Fourier
series to describe the bias error distribution, is particularly
useful for angular measurements because of the internal
periodicity constraint.  The translation-based method does
not explicitly require any standard value.  These methods
have been extended to simultaneously determine the bias
error distributions for two devices.  To validate and clarify
the technical aspects of these methods, computational
simulations have been carried out for various hypothetical
distributions of the bias error.  Laboratory tests have been
conducted for calibrating several different devices such as
A/D converter, angular measurement device and optical
lens.  These methods of estimating the bias error
distribution are effective for a variety of devices.

References:
[1] Coleman, H. W. and Steele, W. G., Experimentation

and uncertainty analysis for engineers, John Wiley &
Sons, New York, 1989.

[2] Bevington, P. R. and Robinson, D. K., Data reduction
and error analysis for the physical sciences, McGraw-
Hill, Inc., New York, 1992.

[3] Finley, T. D., Technique for calibration angular
measurement devices when calibration standards are
unavailable, NASA Technical Memorandum 104148,
August 1991.

[4] Snow, W. L., Comments regarding the modelling of
bias error in certain angular measurement devices
using Fourier techniques, NASA Technical
Memorandum 109048, November 1993.

[5] Aczel, J., Lectures on functional equations and their
applications, Volume 19 of Mathematics in Science
and Engineering. Academic Press, 1966.

[6] Castillo, E. and Ruiz-Cobo, M. R., Functional
equations and modelling in science and engineering,
Volume 161 of Monographs and Textbooks in Pure
and Applied Mathematics, Marcel Dekker, Inc., New
York, 1992.

[7] Liu, T., Cattafesta, L. N., Radeztsky, R. H., and
Burner, A. W., Photogrammetry applied to wind-
tunnel testing, AIAA J., Vol. 38, No. 6, 2000, pp. 964-
971.

Appendix: Least-Squares Estimation of the Coefficients
To determine the coefficients nd  )N,2,1,0n( �=

in the power series or polynomial )x(δ  in Eq. (7) for a set
of data points ix  )M,2,1i( �= , a system of equations

for nd  )N,2,1,0n( �=  is
δdP = , (A1)

where ( )T
N210 d d d d �=d ,
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M21 )(x)(x )(x δδδ �=δδδδ , and
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The least-squares solution to (A1) is
δPP)(P=d T1T − . (A2)

Similarly, a system of equations for the coefficients
( )(

na δ , )(
nb δ ) in the Fourier series in Eq. (14) for a set of

data points iθ  )M,2,1i( �=  is
δaF = , (A3)
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The least-squares solution to (A3) is
δFF)(F=a T1T − . (A4)
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Fig. 1. The given bias error distribution and computed
results by using the scaling-based method (α = 2, N = 13).
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Fig. 13. Images of the target plate at two different
distances relative to the camera.
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